Gaussian Random Vector Fields in Trajectory Modelling

نویسندگان

  • Miguel Barão
  • Jorge S. Marques
چکیده

This paper proposes the use of Gaussian random vector fields as a generative model to describe a set of observed trajectories in a 2-dimensional space. The observed trajectories are sequences of points in space sampled from continuous trajectories that are assumed to have been generated by an underlying velocity field. Given the observed velocities connecting the trajectory points, a vector field is obtained by conditioning a Gaussian random vector field. Some results obtained in simulation are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Numerical Simulation of Non-Gaussian Random Fields

The non-Gaussian random fields are used to modelling some dynamic loads generated by wind turbulence, ocean waves, earthquake ground motion etc. These fields also represent the uncertain properties of different materials (reinforced concrete, composite, soils etc.). This paper presents some methods and the corresponding algorithms to the numerical simulation of stationary non-Gaussian random fi...

متن کامل

Discriminative semi-parametric trajectory model for speech recognition

Hidden Markov Models (HMMs) are the most commonly used acoustic model for speech recognition. In HMMs, the probability of successive observations is assumed independent given the state sequence. This is known as the conditional independence assumption. Consequently, the temporal (inter-frame) correlations are poorly modelled. This limitation may be reduced by incorporating some form of trajecto...

متن کامل

An Explicit Link between Gaussian Fields And

Continuously indexed Gaussian fields (GFs) is the most important ingredient in spatial statistical modelling and geo-statistics. The specification through the covariance function gives an intuitive interpretation of its properties. On the computational side, GFs are hampered with the big-n problem, since the cost of factorising dense matrices is cubic in the dimension. Although the computationa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017